
Alternative Connection Radius for Asymptotic Optimality in RRT*

Rahul Shome

Abstract— Connection radius in asymptotically optimal mo-
tion planning algorithms is of interest to both understand
the theoretical properties of these algorithms, as well as to
ensure practical performance by estimating lower bounds. The
smaller the connection radius, the sparser the data structures
constructed using them, which makes the associated algorithms
computationally more efficient. The original radii for both
roadmap and tree variants were reported to be asymptotically
shrinking functions of n. A recent amendment to the original
arguments for trees demonstrated that the radius has to be
larger for tree-based variants (RRT*). A practical problem
in the newly proposed radius is the persistence of hard-to-
estimate or large-valued parameters (like optimal path cost)
within the connection radius function. In this short paper, a new
perspective is presented of approaching the proof of asymptotic
optimality of RRT* from a minimal variant of RRT* that only
includes tree additions within connection neighborhoods. The
work provides an alternative connection radius that gets rid of
unwieldy parameters, presents insights that holds promise in
studying the problem and using the result.

I. MOTIVATION AND KEY FINDINGS

Asymptotic optimality [1], [2] in motion planning [3]
demonstrated that in kinematic motion planning, careful
selection of connection rules in roadmaps [4] and trees [5]
can ensure that the cost of the solution path asymptotically
approaches the optimal solution cost. The connection radius
lower bound for roadmaps was subsequently improved [6].
The initial key results [3], [6] leverage theories [7] developed
in random geometric graphs [8]. These theories describe
probabilistic and asymptotic properties of graphs with sam-
pled vertices that include edges for vertices lying within
neighborhoods defined by a connection radius function.
Careful choice of connection radius functions can guarantee
asymptotic optimality of motion plans discovered over the
graphs or trees. It is of significance to identify accurate
lower bound estimates of these connection radii. Smaller
connection radii are more desirable as they express sparser
data structures and are incur lower computation and memory
overheads. It is of practical interest to identify estimates
for connection radii in such asymptotically motion planners.
This work provides a new connection radius lower bound
for RRT∗ that is smaller and only involves known constants
(Fig 1 bottom).

The arguments applicable to PRM∗ [3], [6] defined a con-
nection radius as an asymptotically diminishing function rn
of the number of samples n. The lower bound was reported
for both PRM∗ and RRT∗ (i.e., both roadmap and tree-based
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Fig. 1. (Top row:) Five states x1 · · ·x5 sampled in sequence. x2 will
be added to a roadmap (left) but is not part of the tree (middle), unless
a larger radius is used (right). (Middle row:) 10000 samples connected in
an 2D unit square. Using roadmap connectivity with radius proportional to
(logn/n)1/d (left), a radius proportional to (logn/n)1/d used to grow
a tree from the center (middle), and tree using a larger radius (right). The
middle does not resemble an optimal tree while the right does (as has been
theorized in earlier work [9]). (Bottom Row:) In this work we build on
roadmap arguments to come up with an estimate for connection radius that
emulates the behavior like the middle right. A sketch of the relationship
between roadmap arguments of sampling M balls along an optimal path
compared to tree arguments that need to guarantee the M balls in sequence
using the connection radius outlined by the connection radius estimate.

versions of the approach) as proportional to (log n/n)
1
d ,

where d is the dimensionality of the configuration space.
Recently [9], it has been shown that this radius is not

sufficient to address tree-based methods like RRT∗. Instead,
the lower bound is shown to be larger and proportional
to (log n/n)

1
d+1 , which is larger than what is necessary

for roadmaps. It is important to provide an sketch of the
reasoning behind this incongruence. In roadmaps, a new
vertex is connected to another roadmap vertex as long as
it is within the connection radius. In trees, connecting a new
vertex to a tree vertex when it is within the connection radius



and the tree vertex has already been added through sampling.
Previous work [9] noted this as having to contend with the
additional dimension of time (order of samples as outlined
in Fig 1). The lower bound of the connection radius obtained
for RRT∗ was discovered to be proportional to (log n/n)

1
d+1 .

The value of this functional estimate of the connection radius
is important because these estimates are necessary when
RRT∗ is used by practitioners. A key bottleneck with the
existing result is the lingering existence of a parameters in
the constant of proportionality. This includes a term c∗/θ
were c∗ is the optimal path cost (which can be arbitrarily
large) and θ ∈ (0, 1/4) (which can be arbitrarily small).
We present both a alternative proof as well as a radius that
conveniently drops these terms, albeit being slightly larger.

A. Key Results

In this short work we present the following contributions.

• We present a novel proof of asymptotic optimality of
RRT∗ by building off a minimal AO version of the
RRT∗ algorithm (Algo 2).

• Our new proof techniques allow us to estimate a new
connection radius estimate for RRT∗
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where N is the number of samples, d is the dimension-
ality of the configuration space, µfree is the volume of
the feasible configuration space, and λ is the volume
of an unit hyperball. This connection radius is free
from a c∗/θ term that can be hard to estimate, though
asymptotically our radius is still larger than the state-
of-the-art.

II. ROADMAP PRELIMINARIES

A robot r with d degrees of freedom is represented as a d-
dimensional configuration x ∈ X ⊂ Rd. The robot is situated
alongside obstacles in a workspace W ⊂ R3. The subset of
the workspace occupied by the obstacles is Wobs ⊂ W . The
robot geometries themselves occupy vol(x) ⊂ W that for the
configuration x. The invalid subset of the configuration space
is defined as Xobs = {x s.t. vol(x) ∩Wobs ̸= ∅, x ∈ X}.
The feasible subset is Xfree = X \ Xobs.

A motion planning problem is defined by a start config-
uration xs ∈ X , a goal state xg ∈ X . The solution to the
motion planning problem is a feasible path π : Xfree →
[0, 1], π(0) = xs, π(1) = xg . Some cost function is defined
for c : π → R≥0. Given all possible feasible trajectories Π,
the optimal motion planning problem is then solved when the
optimal solution π∗ is found such that π∗ ∈ argmin

π∈Π
c(π).

Definition 1 (Asymptotic Optimality (AO) in Path Cost):
In sampling-based algorithms, as the number of samples n
increases, asymptotic optimality ensures that the solution

Fig. 2. Sampling events are studied over an asymptotic construction along a
robustly optimal trajectory. Here a sequence of hyperballs of radius rn

2+θ
and

separated by θrn
2+θ

are described. Samples xıj are associated with indices ıj
indicating when the configuration was sampled. In a roadmap, the samples
are considered in useful to hit hyperballs in any order, regardless of their
index (when they were sampled).

Algorithm 1: AOROADMAP [3], [6]
Input: Number of configuration samples n, connection

radius rn, start xs, goal xg

Output: Path πn

1 Gn(Vn, En)← (∅, ∅);
2 for n times do
3 x←UNIFORMSAMPLE(X );
4 N ←NN(x,Vn, rn);
5 for xnn ∈ N ∧ ISFEASIBLE(xnn, x) do
6 Vn ← Vn ∪ x;
7 En ← En ∪ (xnn, x);
8 return πn ←A∗(Gn, xs, xg);

πn approaches1 arbitrarily close to the optimal cost,
limn→∞ Pr({c(πn) ≤ (1 + ϵ)c∗}) → 1, ∀ϵ > 0.

Theorem 1 (AO of roadmaps [3], [6] in Algo 1):
A roadmap constructed with a connection radius
rn provides asymptotic guarantees of discovering a
solution πn after n samples that is arbitrarily close
in cost to c∗ of a robustly optimal path π∗, when

rn = γrm(logn)
1
d

n
1
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A. Elements of Roadmap Proof: Construction
An essential component of the proof of asymptotic opti-

mality for roadmaps is an asymptotic construction (Fig 2).
Each hyperball is of size (radius) rn

2+θ , separated by θrn
2+θ

for some arbitrarily small θ ∈ (0, 1). The length of the
optimal path is c∗, then Mn = c∗(2+θ)

θrn
. Assign a B rn

2+θ
(·)

ball around configurations (x̄i) along π∗ and number them
as B rn

2+θ
(x̄1),B rn

2+θ
(x̄2) · · · B rn

2+θ
(x̄Mn

). We are interested in
the probability event of hitting all the balls. Tracking the
construction of Mn hyperballs of radius r

2+θ along π∗ we
get the following probability bound for k samples.

Pr({Fail to sample ball after k tries}) (1)

≤
(
1− λrd

µfree(2 + θ)d

)k
≤ exp

( −λkrd

µfree(2 + θ)d

)
(2)

The first inequality tracks the failure event of sampling
a ball of volume λ( rn

2+θ )
d. The second inequality follows

from applying the union bound over the Mn events. This
is asymptotically assured to not happen in a roadmap for
r = rn, k = n as described in Thm 1.

1Note that robust optimality has been very carefully described in previous
work [6], [9] which needs πn to approach some robust πϵ that is arbitrarily
close (ϵ close in cost and δϵ-clear) to the optimal π∗. For clarity, at the risk
of some imprecision, in this manuscript we mean robustly (near-)optimal
trajectories wherever sampling arguments are applied.



Algorithm 2: AOTREE (CURRENT WORK)
Input: Number of configuration samples N , connection

radius rrrN , start xs, goal region Xgoal

Output: Path πN

1 TN (VN , EN )← (xs, ∅);
2 for N times do
3 x←UNIFORMSAMPLE(X );
4 N ←NN(x,VN , rrrN );
5 xbest ← argmin

xnn∈N∧
ISFEASIBLE(xnn,x)

COSTTOGO(xnn) + c(xnn, x)

6 VN ← VN ∪ x;
7 EN ← EN ∪ (xnn, x);
8 return πN ←RETRACEPATH(TN ,Xgoal);

III. NEW ARGUMENTS FOR TREES

This section will introduce the core contribution of this
paper, a new set of theoretical arguments to derive a new
estimate of a lower bound for the connection radius necessary
for preserving asymptotic optimality in RRT∗. Towards this
end, we will first introduce Algo 2 and then RRT∗ as Algo 3.
The highlighted lines indicate a) the modifications of Algo 2
wrt Algo 1 and b) the modifications of Algo 3 wrt Algo 2.

Theorem 2 (If Algo 2 is AO, Algo 3 is AO.):
Considering rrrN < rn(n), where rrrN is the connection
radius used through the entirety of Algo 2, and rn(n) is
the smallest radius used in the final iteration of Algo 3, if
Algo 2 is asymptotically optimal, so is Algo 3.

Proof: When rrrN < rn(n), the connection radius used
in Algo 2 is no greater than the radius used in Algo 3. Algo 2
is designed to only add edges connected to tree vertices
within the connection radius. This is in contrast to RRT∗

where additional steering edges (Algo 3 lines 6-9) add edges
to the tree for samples Algo 2 will not. This means that
Algo 3 (lines 6-9) introduces a strictly larger set of edges to
the tree. This proves that, if Algo 2 is AO, additional edges
will preserve the property. Another alteration in RRT∗ is the
rewiring in lines 13-15. Given the construction in Fig 3, if
Algo 2 traces such a construction, edges being added will
asymptotically be optimal into each hyperball. This means
the condition on Algo 3 line 14 will not trigger.

We can, hereon, focus on AO arguments for Algo 2 and let
the results follow to RRT∗. Notably, Algo 2 is a modification
on top of Algo 1 which, instead of adding all the neighbors,
will only add the best neighbor out of the tree vertices. We
will use rn as the roadmap connection radius and the new
one of interest for trees to be rrrN .

Theorem 3 (Algo 2 is AO): Algo 2 is asymptotically op-

timal when rrrN > 2
(

1
d+1

) 1
d
(

µfree

λ

) 1
d (logN)

1
d

N
1

d+1
.

A. Proof of Probabilistic Events

The following arguments will build off the asymptotic
guarantees that are set up by the asymptotically optimal
roadmap across its construction (Fig 3.

A tree would require the balls to be hit in sequence, so

B(x̄1) then B(x̄2) · · · then B(x̄Mn)

Algorithm 3: RRT∗ [3], [9]
Input: Number of configuration samples n, connection

radius rn,start xs, goal region Xgoal

Output: Path πn

1 Tn(Vn, En)← (xs, ∅);
2 for n times do
3 x←UNIFORMSAMPLE(X );
4 r ← rn(|Vn|);
5 N ←NN(x,Vn, r);
6 if N = ∅ ∧ η > r then
7 xtree ←NEAREST(x,Vn);
8 x←STEER(xtree, x, η);
9 N ←NN(x,Vn, r);

10 xbest ← argmin
xnn∈N∧

ISFEASIBLE(xnn,x)

COSTTOGO(xnn) + c(xnn, x)

11 Vn ← Vn ∪ x;
12 En ← En ∪ (xnn, x);
13 for xnn ∈ N do
14 if ISFEASIBLE(xnn, x) ∧ COSTTOGO(x) +

c(x, xnn) < COSTTOGO(xnn) then
15 REWIRE(xnn, x);
16 return πn ←RETRACEPATH(Tn,Xgoal);

Fig. 3. The construction is identical to one described fro roadmaps. The
connection radius rrrN required is larger for trees. The sampling indices are
important for tree arguments because they need to be sampled in sequence
i1 < i2 · · · ij < ij+1 for consecutive hyperballs up to the last Mn ball.

We want to use a new functional estimate for the con-
nection radius rrrN necessary for trees using N samples as

rrrN = γours(logN)
1
d

N
1

d+1
.

Intuition behind Estimate: We can think of a new functional
estimate for the connection radius as building on the ne-
cessity to allocate the asymptotic probability guarantees to
each of the indexed hyperballs in sequence, analogous to
allocating a bucket of samples to each hyperball event in
sequence. We already demonstrated n samples for the Mn

ball construction works (for a roadmap). If we repeat this for
each ball, roughly, we need n samples for each of the Mn

balls, i.e., the new radius rrr as a function of tree samples N

needs N ≥ nMn =⇒ n < N
d

d+1 . The estimate of the tree
radius at N can be at least the roadmap radius at r(n), then.

rrr(N) > r(N
d

d+1 ) >
γrm(logN

d
d+1 )

1
d

(N
d

d+1 )
1
d

≥ γours(logN)
1
d

N
1

d+1

New Construction for Trees: We will track the number of
tree samples as N , the connection radius for trees using our
functional estimate as rrrN . For each (ith) ball B(x̄i) we will
allocate k = N

d
d+1 samples. Using the same θ parameterized

separation of balls, we get the number of hyperballs as
MN = c∗(2+θ)

θrrrN
, each with radius rrrN

2+θ . We want to repeat the
probabilistic event outlined in (Eqs 2) over the construction



MN times giving at least N
d

d+1 attempts for each ball in the
construction. This is possible since N > MNN

d
d+1 . Here

we need to show rrrN demonstrates asymptotic guarantees
in terms of hitting the probabilistic event of sampling across
each of the i = 1 · · ·MN hyperballs (B rrrN

2+θ
(x̄i)) construction

using N
d

d+1 samples.

Pr({Fail to sample B rrrN
2+θ

(x̄i) after N
d

d+1 attempts})

≤ exp
( −λ

µfree(2 + θ)d
N

d
d+1rrrdN

)
≤ exp

(−λN
d

d+1 γd
ours

µfree(2 + θ)d

( (logN)
1
d

N
1

d+1

)d)
≤ exp

( −λγd
ours

µfree(2 + θ)d
logN

)
Pr({Fail to sample MN construction})
≤ ∪MN

i Pr({Fail to sample B rrrN
2+θ

(x̄i) between attempts

(i− 1)N
d

d+1 and iN
d

d+1 })

≤ MN exp
( −λγd

ours

µfree(2 + θ)d
logN

)
≤ c∗(2 + θ)

θ(logN)
1
d

N
1

d+1N
−λγd

ours
µfree(2+θ)d

For asymptotic convergence we need the exponent of N
to be negative so that the probability goes to 0.

lim
n→∞

Pr({Fail to sample MN constructions}) → 0

=⇒ γd
ours >

1

d+ 1

µfree(2 + θ)d

λ

=⇒ γours > (2 + θ)
( 1
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) 1
d
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λ

) 1
d

We get as the connection radius,
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(3)

for arbitrarily small θ which is a proof parameter.
By tracing the indicator events along smaller hyperballs

βrrrN in the construction (as in previous work [3], [6], [9] and
outlined in the Appendix) we can demonstrate that the cost
of the solution traced along the samples connected along the
construction will be arbitrarily close to c∗. This proves that
for the connection radius rrrN , Algo 2 is AO, proving Thm 3.
By Thm 2, rrrN also guarantees RRT∗ to be asymptotically
optimal using this connection radius. ■
Note on the connection radius rrrN being asymptotically
larger than the one presented in the amendment to RRT∗ [9]
(due to the exponent on the logN term). Nonetheless, we
arrive at this bound that drops some proof parameters that
might be hard to estimate using Algo 2 as the foundation for
our argument. This is of practical and theoretical utility.

Notes on the parameter θ are included in the Appendix.
Note on Algo 2 as a testbed for RRT∗ properties. The
amendment [9] to the proof of RRT∗ [3] pointed out that the

theoretical connection radius should be insufficient unless ex-
panded. Here we show the growth of the tree in Algo 2 as the
stripped-down version of RRT∗ using purely the edges that
are guaranteed to contribute to the AO properties (visualized
in Fig 4). Indeed, as pointed out in previous work [9], despite
apparent theoretical inconsistencies, RRT∗ [3] has worked
well in practice, even with the originally proposed radius.
This raises interesting questions on how the additional
operations in RRT∗ (RRT-like propagations and rewiring)
might potentially alter its AO properties, possibly lowering
the currently proposed bounds.

Fig. 4. The growth of a tree out of the center of an unit 2D configuration
space using Algo 2. From left to right, the figures show the result after 103,
104, 105, and 106 iterations respectively.

IV. CONCLUSION

The currently proposed proof techniques provide a slightly
different perspective compared to previous work [9], based
off arguments built on a minimal version of RRT∗ (Algo 2)
for asymptotic optimality. A benefit is the elimination of a
c∗/θ term in the connection radius. The practical niceties
primarily provide us a connection radius value that we can
use and be assured possesses theoretical guarantees. Algo 2
provides opportunities for furthering investigation into the
properties of RRT∗ and asymptotic optimality. The current
work hopefully takes a small but positive step towards recon-
ciling practice and theory of using RRT∗ for asymptotically
optimal motion planning.
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APPENDIX

A. rrrN guarantees β-hyperball events for optimality

These arguments are almost identical to previous work [9],
being adapted to our construction. We will inspect events
of hitting hyperballs shrunk by a factor of β ∈ (0, 1), i.e,
assign an indicator Ii = 1 for the ith ball with the failure
event {Fail to sample B βrrrN

2+θ

(x̄i) after N
d

d+1 attempts}. The
expected value is E(Ii) is as follows.

E(Ii) = Pr({Fail to sample B βrrrN
2+θ

(x̄i) after N
d

d+1 attempts})

≤ exp

(
−λβdγd

ours

µfree(2 + θ)d
logN

)
≤ N

−βd

d+1

Define Kβ as the total count of hyperballs in our con-
struction that successfully sample within the β-shrunk ball
in the sequential allocation of N

d
d+1 samples. This means,

E(Kβ) =
∑MN

i E(Ii) ≤ MNE(Ii). We can now describe
an event describing the probability of the Kβ being less than
some fraction (α ∈ (0, 1)) of the total number MN .

Pr({Kβ > αMN}) ≤ E(Kβ)

αMN
≤ N

−βd

d+1

α
.

For arbitrarily small constant α, β

lim
N→∞

Pr({Kβ > αMN}) → 0.

Algo 2 guarantees that the consecutive hyperballs will be
added to the tree, so the event {Kβ > αMN} lets us
bound the cost of the discovered path in terms of pairs of
hyperballs being sampled within the θrrrN

2+θ ball or βθrrrN
2+θ ball.

For a segment involving consecutive balls with at least one
β event, the cost inflation is at most 2βθrrrN

2+θ , while the cost
inflation otherwise is at most 2θrrrN

2+θ . This means, the bound
of the sum of segment costs will be

c(πN ) =

MN∑
i

Edge between B(x̄i−1) and B(x̄i)

≤ αMN

( θrrrN
2 + θ

+
2θrrrN
2 + θ

)
+ (1− α)MN

( θrrrN
2 + θ

+
2βθrrrN
2 + θ

)
≤ MNθrrrN

2 + θ
+

MNθrrrN
2 + θ

(2α+ 2β) ≤ c∗(1 + 2α+ 2β)

=⇒ ∃α, β > 0,∀ϵ > 0, s.t., c(πN ) ≤ (1 + ϵ)c∗ ■

B. Values of Proof Parameter θ

Note that nominally, the connection radius is rrrN =

γours
(logN)

1
d

N
1

d+1
> (2 + θ)

(
1

d+1

) 1
d
(

µfree

λ

) 1
d (logN)

1
d

N
1

d+1
. While

θ ∈ (0, 1) we can flesh out its bound.
We need in our construction N ≥ N

d
d+1MN . This means,

N ≥ N
d

d+1
c∗(2+θ)
θrrrN

, implies θ ≥ c∗(2+θ)

γours(logN)
1
d

. Plugging this

into the radius we get

rrrN >2
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d
(µfree
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d (logN)
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d

N
1
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+ θ
( 1

d+ 1

) 1
d
(µfree

λ

) 1
d (logN)

1
d

N
1

d+1

=⇒ rrrN >2
( 1

d+ 1

) 1
d
(µfree

λ

) 1
d (logN)

1
d

N
1

d+1

+
c∗

N
1

d+1

Hence, regardless of the choice of the proof parameter, for
large enough N , Eq 3 should suffice.
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